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Abstract— The Classical State Space Models (CSSM) allow 
researchers to model a time series (yt), explained by a vector 
of stochastic variables (SV), using the Kalman Filter (KF) 
technique. The evolution of the Structural Equation (SE) is 
commonly assumed to be linear particularly of Markov 
process, which does not address non-linear dynamics of 
today’s world challenges, hence, gives less precise estimates 
and low forecast performance. This paper introduces the 
Modified SSM (MSSM) with Smooth Transition 
Autoregressive (STAR) models as SE within the nonlinear 
framework to ameliorate the limitations of the linear SE. The 
MSSM was applied to Nigeria’s CPI and GDP data as well as 
three simulated data sets. The MSSM captured the 
nonlinearity of the systems using LM test, with results for 
CPI, GDP and n=500 as (0.33, 0.06 and 0.36) showing 
nonlinearity while for n=250 and n=1000 were (0.00 and 
0.03,), which implies linearity. The AIC for CPI in terms of 
the MSSM and CSSM were (23.02 and 25.84), MAPE; (0.43 
and 0.60) and RMSE; (2.13 and 3.65) respectively. Results for 
GDP were AIC; (565.14 and 970.19), MAPE; (0.77 and 3.80) 
and RMSE (2.18 and 10.54) respectively. Results for n=500 
gave AIC; (3,957 and 5,161), MAPE; (-14.9 and 80.5) and 
RMSE; (12.6 and 41.2) respectively. The Modified State 
Space Model with its key attributes has improved inference 
for nonlinear phenomena. The Smooth Transition 
Autoregressive model has been shown to aid the evolution of a 
given system. 

Keywords: Kalman Filter, Classical State Space Models,  
Modified State Space Models.. 

I. INTRODUCTION 

The goal of the paper is to introduce the smooth transition 
autoregressive (STAR) modelling approach for estimating 
nonlinear (especially intrinsically nonlinear) systems in the 
state space modelling framework. The STAR model as 
developed by [9] can be adjusted to suit linear and non-
linear systems. This unique feature forms the basis of 
rethinking the Kalman filtering methodology. Hence, we 
describe the Kalman filter (KF), existing KF for non-linear 
systems and present our methodology of Kalman Filtering 
using the STAR methodology. 

II. RESEARCH METHODOLOGY 

A. The Kalman Filter  

KF also known as linear Gaussian state space model (or 
just state space model – SSM) can be described the two 
system of equations. 

���� = ��� + ��                 (1) 
�� = ��� + ��                      (2) 

 

Time is indexed by the discrete index t. The output ��  is 
a linear function of ����which is linearly dependent on its 
previous state,��. Hence, (1) is termed the measurement or 
observation equation and (2) is referred to as the state or 
transition equation. Both the state and the measurement 
noise ��and �� are zero-mean normally distributed random 
variables with covariance matrices Q and R respectively. 
Only the output of the system is observed, the state and all 
the noise variables are hidden. The KF estimation procedure 
is detailed in [7] and [1]. 
 

B. Existing KF for Nonlinear systems 

The Extended Kalman filter (EKF) and the Unscented 
Kalman Filter (UKF) have been the widely used KF for 
nonlinear systems.  

The EKF as well as the UKF are used to solve the 
estimation problem for any intrinsically linear systems. The 
considered nonlinear system is represented by: 

���� = �(��) + ��                 (3) 
�� = ℎ(��) + ��                      (4) 

 
where ����, ��, ��, and �� remain as explained in KF above. 
The nonlinear mapping f(.) and h(.) are assumed to be 
continuously differentiable with respect to ��. Like KF, the 
EKF and UKF procedure for estimation are the same once 
the state equation (3) has been linearized or an approximate 
linear alternative is available. The UKF has been proved 
superior to the EKF when solving the nonlinear system in 
recent years. Nonetheless, the limitation of these 
approaches of the KF to intrinsically linear systems calls for 
alternative approaches of the KF to any nonlinear system. 
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C. The Modified State Space Model with Smooth 
Transition Autoregressive State Equation 

Given equations 1 and 2, the STAR of [7] is used as the 
transition equation. Hence the model takes the form 

���� = ����� +  ���� … (1∗) 
���� =  ����[1 − �(��)] + �����(��)

+ ���� … (2∗) 
Where ��and ��  are uncorrelated, zero-mean, white 

random process. They are uncorrelated with the initial 
state��. ��is a known matrix and �� and ���� are known 
vectors, non-linear function of the state �(��) is the 
transition function of the state bounded between 0 and 1. 
This property makes it possible to estimate the two extreme 
states also a continuum of states that lie between those two 
extremes 
 

D. Filter Development 

From equations (1∗) and (2∗), the system of the form in 
(2∗) is considered and�� is the system input or system 
disturbance term with zero mean, white noise random 
process that is uncorrelated with the initial state �� and has 
a covariance matrix Ω 
The aim is to get the value of ���� which is not directly 
measurable or observable. However, ���� is the only 
measurable quantity that is related to ����by(1∗) 

���� = ����� + ���� 
Where ‘H’ is a known constant, ���� is a zero mean, 

white noise process that is uncorrelated with �� , the initial 
state and has a covariance of����. ����is the measurement 
or observation noise. Therefore, ���� is a function of the 
measurements��, ��, … ���� in the form 

����� = �(��, ��, … ����) = �(. ) 
Where �(. ) is in the traditional State Space Model 

(SSM) an AR(1) or random walk with drift process. This is 
not so MSSM, but can be possible by making some 
assumptions in the desired STAR process. Hence, the 
introduction of �(. ) to be a smooth transition 
autoregressive process instead of the traditional random 
walk model, i.e.  

���� = ����[1 − �(��)] + �����(��) + ���� … (2∗)      
In (2∗), the aim is to choose �(��) (linear or non-

linear) that will be the best estimate of ����. 
Therefore, ���� is estimated using the STAR model and 
using the specification and estimation procedure by [9]. 
Hence, the need for an estimate of ���� to develop the 
Kalman filter for the redefined MSSM. 
 

E. Predicted Estimate of the State 

To achieve this, the conditional expectation of ���� at time 
�� is required i.e �(����;  �), where � is the vector of all 
the parameters in the model i.e � = (��, ��, �, �)′ 
Hence we consider the predictable configuration of the 
models given by 

�(����;  �) = ����[1 − �(��)] + �����(��) … (3∗) 
�(����;  �)is the deterministic part of the model and can be 
referred to as the SKELETON OF THE MODEL as in [4]. 
This skeleton contains useful properties of non-linear time 
series models and can be obtained from analysing the 
skeleton as well as its associated difference. This will be 
used to build the Kalman filter for the MSSM. 
Let ���� = �(��;  �) with �� assumed to be zero. We then 
differentiate equation (3∗) to obtain the equilibrium and 
fixed point in the skeleton, say�∗ = �(�∗;  �), since �∗ is 
unknown. 

F. Assumptions for Determining Equilibrium Fixed Point 
Estimate 

 The sequence (���, ��, ��, ��, … ) generated from 
(3∗) should converge to �∗ for values of �� close 
to�∗. This is called the LOCALLY STABLE 
EQUILIBRIUM. 

 The sequence generated above converges to �∗ for 
all initial values of ��. This is termed the 
GLOBALLY STABLE EQUILIBRIUM. 

Hence, according to the theory of equilibrium in non-linear 
systems, non-linear difference equations can have different 
types of equilibrium points, categorised as 

 Single (Stable or Unstable) equilibrium 
 Multiple equilibrium 
 No equilibrium at all 

An equilibrium point must satisfy certain stability criterion 
to be significant physically. Also equilibrium is said to be 
stable if close or nearby solutions stay nearby for all future 
time. However, the equilibrium position cannot be 
identified exactly but approximately in dynamic systems 
such as the case in state space modelling. Nonetheless, 
equilibrium must be stable to be physically meaningful. 
For example, Suppose �∗�ℛ� is an equilibrium point for 
the differential equation. 

� ′ = �(�) 
Then �∗ is a stable equilibrium if ∀ neighbourhood � of �∗ 
in ℛ�, there is a neighbourhood �� of �∗ in � such that all 
solution �� with �(0) = �� in �� is defined and remain in 
�∀� > 0 
Hence, a necessary and sufficient condition for an 
equilibrium of 3∗ to be stable (locally) is given as 

�
��(�∗;  �)

��
� < 1 
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Therefore, for the points �� close to �∗ 
����

∗ − �∗ = �(��;  �) − �(��
∗;  �) 

≈
��(��

∗;  �)

��
(�� − �∗) 

Hence, 
|���� − �∗| < |�� − �∗| 

This implies  
��(��

∗;  �)

��
< 1 

This shows that ���� will be closer to �∗ than �� if 
�(��

∗;  �) is a contraction in the neighbourhood of � = �∗. 
Therefore, we derive the difference equation of (3∗) 
��(��

∗;  �)

��
= ���

∗[�(�� − ��)]�(��
∗; �, �)[1 − �(��

∗; �, �)]

+ ��[1 − �(��
∗; �, �)]

+ ���(��
∗; �, �) … (4∗) 

Therefore, 
���

∗[�(�� − ��)]�(��
∗; �, �)[1 − �(��

∗; �, �)]
+ ��[1 − �(��

∗; �, �)] + ���(��
∗; �, �)

= 0 
���

∗[�(�� + ��)]�(��
∗; �, �)[1 − �(��

∗; �, �)]
= ��[1 − �(��

∗; �, �)] + ���(��
∗; �, �) 

Hence, the estimate of st for the equation  

���
∗ =

��[1 − �(��
∗; �, �)] + ���(��

∗; �, �)

[�(�� + ��)]�(��
∗; �, �)[1 − �(��

∗; �, �)]
… (5∗) 

 
Given the estimate of the prediction,���

∗, in (5*), the 
measurement equation (1*) is updated and the state 
equation (2*) is redefined with the new information in 
����. This gives a filtered or optimal estimate of the state 
up to the last estimate at time t. 
Updating the state equation to get an improved estimate is 
achieved through the blending of the predicted estimate 
and the new observation ����. 
By illustration, 

��� = (� − ������)���
∗ + ������ 

where, � − ������ is the blending factor of the predicted 
estimate and  ������ is the blending factor for the new 
observation ����. This can be rewritten as  

��� = ���
∗ + ��(���� − �������

∗)    … (7∗) 
The optimal MMSE of ��is therefore required to optimise 
the system. This is achieved by finding the optimal value 
of ��. 

To achieve the optimal value of ��, the later part of 
(7∗) is considered and this contains the new residual, 
���� − �������

∗, which is a measurement noise, however, 
the aim is to optimize the state. Hence, the error generated 
in the “a posteriori filtered state vector” estimate, ���

∗, is 
used. That is; 
 

�� = ������������� − ����������������� =  ��� − ���
∗ 

 

This gives the filtered state vector covariance matrix 
�� = �[����

′ ] 
= �[(��� − ���

∗)(��� − ���
∗)′] 

where ��� takes the form in 7∗ 
Hence, 

�� = �{[��� − ���
∗ − ��(���� − �������

∗)][��� − ���
∗

− ��(���� − �������
∗)]′} 

and ���� takes the form in 1∗ 
This implies that, 

�� = �{[(��� − ���
∗)

− ��(����� +  ����

− �������
∗)][����]′} 

= �{[(��� − ���
∗) − ���(��� − ���

∗) − ������][����]′} 
= �{[(� − ������)(��� − ���

∗)(��� − ���
∗)′(� − ������)′

− (� − ������)(��� − ���
∗)����

� ��
�]

− ������(��� − ���
∗)′(� − ������)′

+ ����������
� ��

�} 
= (� − ������)�[(��� − ���

∗)(��� − ���
∗)′](� − ������)′

− (� − ������)�[(��� − ���
∗)����

� ]��
�

− ���[����(��� − ���
∗)′](� − ������)′

+ ���[��������
� ]��

�} 
Where �[����] = 0 by definition 
Therefore, the filtered state vector covariance matrix, 

�� = (� − ������)��
∗(� − ������)′

+ ������
�,         ∀�� … (8∗) 

Where, ��
∗ = �[(��� − ���

∗)(��� − ���
∗)′and �� = �[��������

� ] 
This shows that the filtered state vector covariance 
matrix,��, is also dependent on �� and further reveals the 
importance of the optimal value of K for both ��� and ��.  

The minimization of K will require summing the 
diagonal entries of the state vector covariance matrix 
(Since the diagonal entries are the variances). This is 
achieved by the use of some matrices techniques, i.e. 
taking the derivatives of the trace of ��, (Tr��) with respect 
to (w.r.t.) �� to get the optimal ��.  
Hence, rewriting (8*), 

�� = ��
∗ − ��������

∗ − ��
∗����

′ ��
′

+ ��(������
∗����

′ + ��)��
� … (8�

∗ ) 
and differentiating w.r.t ��, 

�(����)

���

=
�

��
��(��

∗) −
�

��
��(��������

∗)

−
�

��
��(��

∗����
′ ��

′)

+
�

��
��(��(������

∗����
′ + ��)��

�) 

Hence, 
�� = (������

∗)(������
∗����

′ + ��)�� … (9∗) 
This is the Kalman gain and can be substituted in 8 to 
obtain the optimal estimate of the state error covariance 
matrix. 
Substituting (9∗) into (8�

∗ ) gives, 
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�� = ��
∗ − (������

∗)′(������
∗����

′ + ��)��������
∗

− ��
∗����

′ [(������
∗)(������

∗����
′

+ ��)��]′

+ (������
∗)(������

∗����
�

+ ��)��(������
∗����

�

+ ��)[(������
∗)(������

∗����
� + ��)��]� 

where (������
∗����

′ + ��)��(������
∗����

′ + ��) = � 
�� = ��

∗ − (������
∗)′(������

∗����
′ + ��)��������

∗ … (8�
∗ )   

Therefore,  
�� = ��

∗ − ��������
∗ … (8�

∗)  
 
Hence, (8�

∗ ), (8�
∗ ), (8�

∗) are three different equations for ��. 
However, (8�

∗ ) ���(8�
∗) are the only valid equations for 

the optimal ��. This implies that any of the two equations 
can be used to optimise the system. Therefore, any of 
(8�

∗ )���(8�
∗) can be used in (9*) to optimize the state 

equation (2*) and system (1*). 

III. RESULTS 

In summary, the state update and measurement update are 
as follows 

A. State Update: 

���
∗ =

��[1 − �(��
∗; �, �)] + ���(��

∗; �, �)

[�(�� + ��)]�(��
∗; �, �)[1 − �(��

∗; �, �)]
 

�� = (� − ������)��
∗(� − ������)′ + ������

�,         ∀�� 
where, ��

∗ = �[(��� − ���
∗)(��� − ���

∗)′and �� = �[��������
� ] 

B. Measurement update: 

��� = ���
∗ + ��(���� − �������

∗)     
�� = ��

∗ − (������
∗)′(������

∗����
′ + ��)��������

∗ 
where (������

∗)�(������
∗����

� + ��) = �� 

IV. VDISCUSSION 

The Nigerian Consumer Price Index (CPI) between January 
1995 - December 2015 and Gross Domestic Products 
(GDP) data between Q1 1988 and Q4 2013 were collected 
from the National Bureau of Statistics data portal to test the 
practicability of the Modified State Space Model (MSSM) 
as well as its performance against the Classical State Space 
Model (SSM).  

In addition to the real data, simulated data samples of 
sizes 250, 500, and 1; 000, from a logistics function were 
also used to verify the superiority of the MSSM against the 
SSM.  

After the evaluation the Akaike Information Criterion 
(AIC), Mean Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE) were used as assessment 
criteria to evaluate the MSSM and SSM. 

For the SSM, the "KFAS" package in the R package 
was used to obtain the results while for the MSSM, the 
authors developed the code for the model but used the 
"tsdyn" R package for the Smooth Transition 
Autoregressive (STAR) model.  

The Lagrange Multiplier (LM) test statistic was used to 
validate the nonlinearity of the data sets at  
p < 0.05 before estimating the Modified State Space Model 
(MSSM). The Predicted State (PS), Blending Equation 
(BE), Kalman Gain (KG), and Filtered State Covariance 
(FSC) which are key attributes of the MSSM were derived 
using the STAR model to tune the Kalman Filter. 

The LM test result revealed that the CPI data was linear 
and the GDP data was nonlinear. The assessment tests for 
the CPI, GDP and the simulated samples of 250, 500 and 
1000 are presented in Table 1 below: 

TABLE 1:           SUMMARY OF DIAGONOSTIC RESULTS 

 
Table Column Head 

Measure SSM MSSM 

CPI 

AIC 
RMSE 
MAPE 

25.84  
3.65  
0.60 

23.02 
2.13 
0.43 

GDP 
AIC 

RMSE 
MAPE 

23.25 
13.84 
33.29 

11.44 
7.67 
23.17 

n = 250 
AIC 

RMSE 
MAPE 

2546.6 
127.4 
39.3 

1941.6 
66.8 
11.7 

n = 500 
AIC 

RMSE 
MAPE 

5161.7 
80.5 
41.2 

3957.7 
-14.9 
12.6 

n = 1000 
AIC 

RMSE 
MAPE 

10289.60 
44.7 
40.9 

6550.30 
21.2 
6.4 

a. This results were generated using the R Package for the two models 

V. CONCLUSION  

After implementation of MSSM and CSSM using the 
collected samples, the model diagnostics results for the 
MSSM are less than the CSSM results. It was noted that the 
MSSM is efficient in the estimation of both linear and 
nonlinear systems. Hence, the MSSM is therefore preferred 
in the estimation and inference for phenomena exhibiting 
nonlinear relationships. 
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